Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Methoxy-2-nitro-4'-(trifluoromethyl)biphenyl

Yan-Jun Hou, Xin-Min Li, Wen-Yi Chu and Zhi-Zhong Sun*

College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: hljusunzhizhong@163.com

Received 16 September 2011; accepted 23 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.050; wR factor = 0.161; data-to-parameter ratio = 13.3.

The title compound, $C_{14}H_{10}F_3NO_3$, was prepared by a palladium-catalysed Suzuki-Miyaura coupling reaction. The dihedral angle between the nitro group and its parent benzene ring is $66.85 (19)^{\circ}$ while the dihedral angle between the two benzene rings is 49.98 (9)°. The CF₃ group is disordered over two sets of sites with occupancies of 0.457 (8) and 0.543 (8).

Related literature

For general background to the synthesis and properties of the title compound, see: Suzuki (1999); Razler et al. (2009). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996).

 $M_r = 297.23$

Experimental

Crystal data $C_{14}H_{10}F_3NO_3$

Monoclinic, $P2_1/c$ a = 8.1956 (13) Åb = 20.777 (3) Å c = 7.9715 (12) Å $\beta = 104.240 \ (2)^{\circ}$ V = 1315.7 (3) Å³

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.966, \ T_{\max} = 0.974$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.161$	independent and constrained
S = 1.05	refinement
3235 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
243 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
36 restraints	

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the National Natural Science Foundation of China (No. 20872030) and Heilongjiang University, China, for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2027).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kimpe, N. D., Keppens, M. & Froncg, G. (1996). Chem. Commun. 5, 635-636. Razler, T. M., Hsiao, Y., Qian, F., Fu, R., Khan, R. K. & Carl, E. S. (2009). J. Org. Chem. 74, 1381-1384.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Suzuki, A. (1999). J. Organomet. Chem. A576, 147-168.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Z = 4

Mo $K\alpha$ radiation

 $0.26 \times 0.24 \times 0.20 \text{ mm}$

10512 measured reflections

3235 independent reflections 1910 reflections with $I > 2\sigma(I)$

 $\mu = 0.13 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.029$

supplementary materials

Acta Cryst. (2011). E67, o2915 [doi:10.1107/81600536811039092]

4-Methoxy-2-nitro-4'-(trifluoromethyl)biphenyl

Y.-J. Hou, X.-M. Li, W.-Y. Chu and Z.-Z. Sun

Experimental

To a solution of 4-bromo-trifluoromethylphenyl (5 mmol) and 4-methoxy-2-nitro-phenylboronic acid (6 mmol) in 20 ml water and 20 ml methanol was added Pd(OAc)₂ (5 mmol) and K₂CO₃ (10 mmol). After stirring the reaction mixture for 12 h at room temperature, the aqueous phases were extracted with 100 ml ethyl acetate. The organic extracts were washed with 200 ml saturated aqueous sodium chloride, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The resulting crude material was purified *via* silica gel chromatography (5% ethyl acetate/hexane) to afford a translucent solid in a yield of 80%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from methanol at room temperature in a total yield of 32%. Analysis found: C 56.6, H 3.3, N 4.6%; C₁₄H₁₀F₃NO₃ requires: C 56.6, H 3.4, N 4.7%. 1H NMR (400 MHz, CDCl₃) 7.66 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 2.6 Hz, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.5 Hz, 1H), 7.19 (dd, J = 8.6, 2.6 Hz, 1H), 3.92 (s, 3H).

Refinement

All H-atoms were positioned geometrically and included in the refinement in the riding-model approximation, with $U_{iso}(H)$ = 1.5Ueq(methyl C) and 1.2Ueq(aromatic C). The –CF₃ group is disordered over two sites with occupancies of 0.457 (8) and 0.543 (8). For this fragment, some anisotropic displacement ellipsoids were rather elongated which led us to use the ISOR restraints (Sheldrick, 2008).

Figures

Fig. 1. The structure of (I) with 50% probability displacement ellipsoids for non-hydrogen atoms showing the disordered $-CF_3$ group.

4-Methoxy-2-nitro-4'-(trifluoromethyl)biphenyl

Crystal data

C₁₄H₁₀F₃NO₃ $M_r = 297.23$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 8.1956 (13) Å b = 20.777 (3) Å c = 7.9715 (12) Å $\beta = 104.240$ (2)° F(000) = 608 $D_x = 1.501 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1880 reflections $\theta = 2.8-22.6^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 293 KBlock, colorless

$V = 1315.7 (3) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	3235 independent reflections
Radiation source: fine-focus sealed tube	1910 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
phi and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.966, \ T_{\max} = 0.974$	$k = -27 \rightarrow 27$
10512 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_o^2) + (0.0741P)^2 + 0.1504P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
3235 reflections	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
243 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
36 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.026 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displacement	parameters	$(Å^2$)
				······································		1	······································	I I I I I I I I I I I I I I I I I I I	r · · · · · · · · ·	1 .	/

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1A	0.6447 (4)	0.19880 (14)	0.4301 (4)	0.0705 (7)	0.46

 $0.26 \times 0.24 \times 0.20 \text{ mm}$

F1A	0.6131 (8)	0.1395 (3)	0.3972 (18)	0.147 (3)	0.46
F2A	0.7487 (9)	0.2001 (4)	0.5832 (6)	0.108 (2)	0.46
F3A	0.7514 (8)	0.2162 (4)	0.3299 (10)	0.1111 (16)	0.46
C1B	0.6447 (4)	0.19880 (14)	0.4301 (4)	0.0705 (7)	0.54
F1B	0.6331 (8)	0.1469 (3)	0.5270 (8)	0.1152 (18)	0.54
F2B	0.7864 (6)	0.2248 (3)	0.4985 (14)	0.142 (2)	0.54
F3B	0.6443 (9)	0.1723 (3)	0.2844 (5)	0.1143 (16)	0.54
O3	-0.3255 (2)	0.48543 (8)	0.4265 (2)	0.0667 (5)	
N1	0.0999 (2)	0.42470 (11)	0.1294 (2)	0.0604 (5)	
C2	0.4994 (3)	0.24308 (11)	0.4159 (3)	0.0549 (6)	
C3	0.5169 (3)	0.30787 (12)	0.3869 (3)	0.0581 (6)	
C4	0.3843 (3)	0.34936 (11)	0.3798 (3)	0.0551 (6)	
C5	0.2308 (3)	0.32692 (10)	0.4005 (3)	0.0496 (5)	
C6	0.2145 (3)	0.26131 (11)	0.4274 (3)	0.0573 (6)	
C7	0.3473 (3)	0.21981 (12)	0.4348 (3)	0.0606 (6)	
C8	0.0882 (3)	0.37089 (10)	0.4025 (3)	0.0485 (5)	
C9	0.0257 (3)	0.41719 (10)	0.2790 (3)	0.0484 (5)	
C10	-0.1091 (3)	0.45702 (10)	0.2791 (3)	0.0504 (5)	
C11	-0.1881 (3)	0.45081 (10)	0.4134 (3)	0.0512 (5)	
C12	-0.1259 (3)	0.40693 (11)	0.5441 (3)	0.0574 (6)	
H12	-0.1751	0.4039	0.6372	0.069*	
C13	0.0072 (3)	0.36797 (11)	0.5379 (3)	0.0568 (6)	
C14	-0.4039 (3)	0.52531 (14)	0.2844 (4)	0.0754 (8)	
H14A	-0.3272	0.5585	0.2700	0.113*	
H14B	-0.5032	0.5445	0.3064	0.113*	
H14C	-0.4343	0.4998	0.1810	0.113*	
H10	-0.146 (3)	0.4878 (10)	0.188 (3)	0.053 (6)*	
H4	0.401 (3)	0.3937 (11)	0.364 (3)	0.064 (7)*	
H11	0.044 (3)	0.3381 (11)	0.630 (3)	0.063 (6)*	
Н6	0.112 (3)	0.2454 (11)	0.442 (3)	0.062 (6)*	
H7	0.332 (3)	0.1735 (12)	0.454 (3)	0.067 (7)*	
Н3	0.622 (3)	0.3236 (11)	0.371 (3)	0.068 (7)*	
O2	0.1707 (3)	0.47594 (11)	0.1180 (3)	0.0972 (7)	
O1	0.0856 (3)	0.38237 (10)	0.0266 (3)	0.1025 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.0697 (18)	0.0762 (18)	0.0648 (17)	0.0077 (14)	0.0150 (13)	-0.0032 (14)
F1A	0.114 (4)	0.079 (3)	0.239 (7)	0.007 (3)	0.025 (6)	-0.054 (5)
F2A	0.099 (4)	0.151 (6)	0.063 (2)	0.062 (4)	-0.001 (2)	0.004 (3)
F3A	0.089 (3)	0.141 (4)	0.123 (4)	0.043 (3)	0.061 (3)	0.041 (3)
C1B	0.0697 (18)	0.0762 (18)	0.0648 (17)	0.0077 (14)	0.0150 (13)	-0.0032 (14)
F1B	0.126 (4)	0.116 (4)	0.115 (3)	0.066 (3)	0.053 (3)	0.055 (3)
F2B	0.065 (2)	0.122 (4)	0.221 (6)	0.017 (2)	0.002 (4)	-0.038 (4)
F3B	0.151 (4)	0.128 (3)	0.070 (2)	0.067 (3)	0.039 (2)	-0.007 (2)
O3	0.0589 (10)	0.0774 (11)	0.0701 (11)	0.0099 (8)	0.0280 (8)	0.0027 (8)
N1	0.0601 (12)	0.0727 (13)	0.0524 (11)	0.0114 (10)	0.0215 (9)	0.0146 (10)

supplementary materials

C2	0.0553 (13)	0.0601 (13)	0.0466 (12)	0.0065 (11)	0.0076 (10)	-0.0014 (9)
C3	0.0517 (13)	0.0662 (15)	0.0568 (13)	-0.0055 (11)	0.0139 (10)	-0.0024 (11)
C4	0.0562 (14)	0.0512 (13)	0.0586 (13)	-0.0068 (11)	0.0152 (10)	0.0017 (10)
C5	0.0518 (12)	0.0518 (12)	0.0436 (11)	-0.0029 (10)	0.0085 (9)	0.0027 (9)
C6	0.0535 (14)	0.0536 (13)	0.0655 (14)	-0.0051 (11)	0.0161 (11)	0.0067 (10)
C7	0.0651 (15)	0.0524 (13)	0.0637 (14)	0.0005 (12)	0.0148 (11)	0.0058 (11)
C8	0.0477 (12)	0.0475 (11)	0.0501 (12)	-0.0066 (9)	0.0115 (9)	0.0023 (9)
C9	0.0518 (12)	0.0519 (11)	0.0438 (11)	-0.0031 (9)	0.0166 (9)	0.0019 (9)
C10	0.0531 (12)	0.0499 (11)	0.0501 (12)	0.0002 (10)	0.0161 (10)	0.0056 (10)
C11	0.0489 (12)	0.0529 (12)	0.0545 (12)	-0.0062 (10)	0.0176 (10)	-0.0032 (10)
C12	0.0590 (14)	0.0657 (14)	0.0529 (12)	-0.0066 (11)	0.0243 (10)	0.0026 (10)
C13	0.0611 (14)	0.0604 (13)	0.0492 (12)	-0.0040 (11)	0.0144 (10)	0.0104 (10)
C14	0.0611 (16)	0.0862 (18)	0.0803 (18)	0.0158 (14)	0.0201 (13)	0.0066 (14)
02	0.1010 (15)	0.1191 (17)	0.0805 (14)	-0.0256 (13)	0.0393 (12)	0.0224 (12)
01	0.149 (2)	0.0977 (15)	0.0789 (13)	0.0180 (14)	0.0628 (14)	-0.0116 (11)

Geometric parameters (Å, °)

C1A—F1A	1.273 (6)	C5—C8	1.487 (3)
C1A—F2A	1.306 (6)	C6—C7	1.378 (3)
C1A—F3A	1.370 (5)	С6—Н6	0.93 (2)
C1A—C2	1.487 (3)	С7—Н7	0.99 (2)
O3—C11	1.361 (3)	C8—C9	1.381 (3)
O3—C14	1.423 (3)	C8—C13	1.401 (3)
N1—O1	1.188 (3)	C9—C10	1.381 (3)
N1—O2	1.226 (3)	C10-C11	1.387 (3)
N1—C9	1.474 (2)	С10—Н10	0.96 (2)
C2—C3	1.379 (3)	C11—C12	1.384 (3)
C2—C7	1.380 (3)	C12—C13	1.369 (3)
C3—C4	1.377 (3)	С12—Н12	0.9300
С3—Н3	0.96 (2)	C13—H11	0.95 (2)
C4—C5	1.389 (3)	C14—H14A	0.9600
C4—H4	0.94 (2)	C14—H14B	0.9600
C5—C6	1.391 (3)	C14—H14C	0.9600
F1A—C1A—F2A	105.4 (6)	С6—С7—Н7	119.2 (14)
F1A—C1A—F3A	105.2 (5)	С2—С7—Н7	120.7 (14)
F2A—C1A—F3A	100.1 (5)	C9—C8—C13	114.61 (19)
F1A—C1A—C2	117.7 (4)	C9—C8—C5	125.07 (17)
F2A—C1A—C2	112.6 (3)	C13—C8—C5	120.31 (19)
F3A—C1A—C2	114.0 (3)	C10—C9—C8	124.99 (18)
C11—O3—C14	117.82 (17)	C10-C9-N1	115.23 (18)
O1—N1—O2	124.0 (2)	C8—C9—N1	119.73 (18)
O1—N1—C9	119.3 (2)	C9—C10—C11	118.1 (2)
O2—N1—C9	116.6 (2)	С9—С10—Н10	120.4 (12)
C3—C2—C7	119.6 (2)	C11—C10—H10	121.5 (12)
C3—C2—C1A	120.2 (2)	O3—C11—C12	116.66 (18)
C7—C2—C1A	120.2 (2)	O3—C11—C10	124.2 (2)
C4—C3—C2	120.3 (2)	C12—C11—C10	119.1 (2)
С4—С3—Н3	120.5 (14)	C13—C12—C11	120.76 (19)

С2—С3—Н3	119.2 (14)	C13—C12—H12	119.6
C3—C4—C5	120.9 (2)	C11—C12—H12	119.6
С3—С4—Н4	118.5 (15)	C12—C13—C8	122.4 (2)
С5—С4—Н4	120.6 (15)	C12—C13—H11	117.6 (14)
C4—C5—C6	118.1 (2)	C8—C13—H11	120.1 (14)
C4—C5—C8	122.17 (19)	O3—C14—H14A	109.5
C6—C5—C8	119.66 (19)	O3—C14—H14B	109.5
C7—C6—C5	121.0 (2)	H14A—C14—H14B	109.5
С7—С6—Н6	119.8 (14)	O3—C14—H14C	109.5
С5—С6—Н6	119.2 (14)	H14A—C14—H14C	109.5
C6—C7—C2	120.1 (2)	H14B—C14—H14C	109.5
F1A—C1A—C2—C3	-156.3 (8)	C13—C8—C9—C10	-2.3 (3)
F2A—C1A—C2—C3	80.8 (6)	C5—C8—C9—C10	178.5 (2)
F3A—C1A—C2—C3	-32.4 (6)	C13—C8—C9—N1	-179.6 (2)
F1A-C1A-C2-C7	24.9 (8)	C5-C8-C9-N1	1.2 (3)
F2A—C1A—C2—C7	-98.0 (6)	O1—N1—C9—C10	-111.7 (2)
F3A-C1A-C2-C7	148.7 (5)	O2—N1—C9—C10	66.8 (3)
C7—C2—C3—C4	1.1 (3)	O1—N1—C9—C8	65.8 (3)
C1A—C2—C3—C4	-177.7 (2)	O2—N1—C9—C8	-115.6 (2)
C2—C3—C4—C5	-0.4 (3)	C8—C9—C10—C11	0.5 (3)
C3—C4—C5—C6	-0.4 (3)	N1-C9-C10-C11	177.87 (19)
C3—C4—C5—C8	176.8 (2)	C14—O3—C11—C12	-172.8 (2)
C4—C5—C6—C7	0.5 (3)	C14—O3—C11—C10	7.2 (3)
C8—C5—C6—C7	-176.7 (2)	C9—C10—C11—O3	-177.8 (2)
C5—C6—C7—C2	0.2 (4)	C9-C10-C11-C12	2.2 (3)
C3—C2—C7—C6	-1.0 (3)	O3—C11—C12—C13	177.1 (2)
C1A—C2—C7—C6	177.8 (2)	C10-C11-C12-C13	-2.9 (3)
C4—C5—C8—C9	50.9 (3)	C11—C12—C13—C8	0.9 (4)
C6—C5—C8—C9	-131.9 (2)	C9—C8—C13—C12	1.6 (3)
C4—C5—C8—C13	-128.2 (2)	C5—C8—C13—C12	-179.2 (2)
C6—C5—C8—C13	48.9 (3)		

Fig. 1

